6,153 research outputs found

    Breathing solitary-pulse pairs in a linearly coupled system

    Full text link
    It is shown that pairs of solitary pulses (SPs) in a linearly-coupled system with opposite group-velocity dispersions form robust breathing bound states. The system can be realized by temporal-modulation coupling of SPs with different carrier frequencies propagating in the same medium, or by coupling of SPs in a dual-core waveguide. Broad SP pairs are produced in a virtually exact form by means of the variational approximation. Strong nonlinearity tends to destroy the periodic evolution of the SP pairs.Comment: Optics Letters, in pres

    Bounds for graph regularity and removal lemmas

    Get PDF
    We show, for any positive integer k, that there exists a graph in which any equitable partition of its vertices into k parts has at least ck^2/\log^* k pairs of parts which are not \epsilon-regular, where c,\epsilon>0 are absolute constants. This bound is tight up to the constant c and addresses a question of Gowers on the number of irregular pairs in Szemer\'edi's regularity lemma. In order to gain some control over irregular pairs, another regularity lemma, known as the strong regularity lemma, was developed by Alon, Fischer, Krivelevich, and Szegedy. For this lemma, we prove a lower bound of wowzer-type, which is one level higher in the Ackermann hierarchy than the tower function, on the number of parts in the strong regularity lemma, essentially matching the upper bound. On the other hand, for the induced graph removal lemma, the standard application of the strong regularity lemma, we find a different proof which yields a tower-type bound. We also discuss bounds on several related regularity lemmas, including the weak regularity lemma of Frieze and Kannan and the recently established regular approximation theorem. In particular, we show that a weak partition with approximation parameter \epsilon may require as many as 2^{\Omega(\epsilon^{-2})} parts. This is tight up to the implied constant and solves a problem studied by Lov\'asz and Szegedy.Comment: 62 page

    Span programs and quantum algorithms for st-connectivity and claw detection

    Full text link
    We introduce a span program that decides st-connectivity, and generalize the span program to develop quantum algorithms for several graph problems. First, we give an algorithm for st-connectivity that uses O(n d^{1/2}) quantum queries to the n x n adjacency matrix to decide if vertices s and t are connected, under the promise that they either are connected by a path of length at most d, or are disconnected. We also show that if T is a path, a star with two subdivided legs, or a subdivision of a claw, its presence as a subgraph in the input graph G can be detected with O(n) quantum queries to the adjacency matrix. Under the promise that G either contains T as a subgraph or does not contain T as a minor, we give O(n)-query quantum algorithms for detecting T either a triangle or a subdivision of a star. All these algorithms can be implemented time efficiently and, except for the triangle-detection algorithm, in logarithmic space. One of the main techniques is to modify the st-connectivity span program to drop along the way "breadcrumbs," which must be retrieved before the path from s is allowed to enter t.Comment: 18 pages, 4 figure

    DNA-Mediated Electrochemistry

    Get PDF
    The base pair stack of DNA has been demonstrated as a medium for long-range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here, we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry

    Heavy Hitters and the Structure of Local Privacy

    Full text link
    We present a new locally differentially private algorithm for the heavy hitters problem which achieves optimal worst-case error as a function of all standardly considered parameters. Prior work obtained error rates which depend optimally on the number of users, the size of the domain, and the privacy parameter, but depend sub-optimally on the failure probability. We strengthen existing lower bounds on the error to incorporate the failure probability, and show that our new upper bound is tight with respect to this parameter as well. Our lower bound is based on a new understanding of the structure of locally private protocols. We further develop these ideas to obtain the following general results beyond heavy hitters. ∙\bullet Advanced Grouposition: In the local model, group privacy for kk users degrades proportionally to ≈k\approx \sqrt{k}, instead of linearly in kk as in the central model. Stronger group privacy yields improved max-information guarantees, as well as stronger lower bounds (via "packing arguments"), over the central model. ∙\bullet Building on a transformation of Bassily and Smith (STOC 2015), we give a generic transformation from any non-interactive approximate-private local protocol into a pure-private local protocol. Again in contrast with the central model, this shows that we cannot obtain more accurate algorithms by moving from pure to approximate local privacy
    • 

    corecore